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VI. Timing Measurements

Pulse height measurements discussed up to now emphasize
accurate measurement of signal charge.

• Timing measurements optimize determination of time of
occurrence.

• For timing, the figure of merit is not signal-to-noise,
but slope-to-noise ratio.

Consider the leading edge of a pulse fed into a threshold
discriminator (comparator).

The instantaneous signal level is modulated by noise.

⇒ time of threshold crossing fluctuates
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Typically, the leading edge is not linear, so the optimum trigger level
is the point of maximum slope.

Pulse Shaping

Consider a system whose bandwidth is determined by a single RC
integrator.

The time constant of the RC low-pass filter determines the

•  rise time(and hence dV/dt)
•  amplifier bandwidth (and hence the noise)

Time dependence

The rise time is commonly expressed as the interval between the
points of 10% and 90% amplitude

In terms of bandwidth

Example: An oscilloscope with 100 MHz bandwidth has
3.5 ns rise time.
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The frequency response of this simple system is

The magnitude of the gain

At the upper bandwidth limit

the signal response has dropped to

Expressed in terms of the upper bandwidth limit fu , the frequency
response
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A Parenthetical Practical Comment

Since it is often convenient to view the frequency response
logarithmically, gain is often expressed in logarithmic scale,
whose unit is the Bel.

Defined as a power ratio

Since dB tends to be a more common order of magnitude, this
is usually written

which can be expressed as a voltage ratio

or if R1= R2

V2 /V1 = 10 corresponds to 20 dB.

Caution: In practice, voltage gains are often expressed in dB
without regard to the resistance ratio. Clearly,
converting such a gain figure into a power ratio can
be very misleading.

At the upper cutoff frequency of the amplifier, the gain has
dropped to 1/√2 of its maximum, corresponding to –3 dB.

⇒ Bandwidth limits are often referred to colloquially as
“3 dB frequencies”.
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Bandwidth of a Cascade of Amplifiers

Invariably, the required gain is provided by multiple amplifying
stages.

If we define the bandwidth of a cascade of n amplifiers fu
(n) as the

frequency where the gain has dropped by –3 dB, i.e. 1/√2

then

Correspondingly, for the lower cutoff frequency

Calculating the rise time of a cascade of n stages is more difficult,
but to a good approximation (~ 10%)
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Choice of Rise Time in a Timing System

Assume a detector pulse with peak amplitude V0 and a rise time tc

passing through an amplifier chain with a rise time tra.

The cumulative rise time at the amplifier output (discriminator output)
is

The electronic noise at the amplifier output is

For a single RC  time constant the noise bandwidth

As the number of cascaded stages increases, the noise bandwidth
approaches the signal bandwidth. In any case
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The timing jitter

The second factor assumes a minimum when the rise time of the
amplifier equals the collection time of the detector  tra= tc.

At amplifier rise times greater than the collection time, the time
resolution suffers because of rise time degradation. For smaller
amplifier rise times the electronic noise dominates.

The timing resolution improves with decreasing collection time √tc

and increasing signal amplitude V0.
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The integration time should be chosen to match the rise time.

How should the differentiation time be chosen?

As shown in the figure below, the loss in signal can be appreciable
even for rather large ratios τdif f /τint , e.g. >20% for τdiff /τint = 10.

Since the time resolution improves directly with increasing peak
signal amplitude, the differentiation time should be set to be as large
as allowed by the required event rate.
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Time Walk

For a fixed trigger level the time of threshold crossing depends on
pulse amplitude.

⇒ Accuracy of timing measurement limited by

• jitter (due to noise)

• time walk (due to amplitude variations)

If the rise time is known, “time walk” can be compensated in software
event-by-event by measuring the pulse height and correcting the time
measurement.

This technique fails if both amplitude and rise time vary, as is
common.

In hardware, time walk can be reduced by setting the threshold to the
lowest practical level, or by using amplitude compensation circuitry,
e.g. constant fraction triggering.
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Lowest Practical Threshold

Single RC integrator has maximum slope at t= 0.

However, the rise time of practically all fast timing systems is
determined by multiple time constants.

For small t the slope at the output of a single RC integrator is linear,
so initially the pulse can be approximated by a ramp α t.

Response of the following integrator

⇒ The output is delayed by τ and curvature is introduced at small t.

Output attains 90% of input slope after t= 2.3τ.

Delay for n integrators= nτ
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Output pulse shape for multiple RC integrators

Time constants changed to preserve the peaking time
(τn= τn=1 /n)

Increasing the number of integrators makes the output pulse more
symmetrical with a faster return to baseline.

⇒ improved rate capability at the same peaking time

but …    increased curvature at beginning of pulse limits
minimum threshold in timing measurements
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Constant Fraction Timing

Basic Principle:

make the threshold track the signal

The threshold is derived from the signal by passing it through an
attenuator VT = f Vs.

The signal applied to the comparator input is delayed so that the
transition occurs after the threshold signal has reached its maximum
value VT = f V0 .



Introduction to Radiation Detectors and Electronics, 02-Mar-99 Helmuth Spieler
VI. Timing Measurements LBNL

13

For simplicity assume a linear leading edge

so the signal applied to the input is

When the input signal crosses the threshold level

and the comparator fires at the time

at a constant fraction of the rise time independent of peak amplitude.

If the delay td is reduced so that the pulse transitions at the signal and
threshold inputs overlap, the threshold level

and the comparator fires at

independent of both amplitude and rise time (amplitude and rise-time
compensation).
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The circuit compensates for amplitude and rise time if pulses have a
sufficiently large linear range that extrapolates to the same origin.

The condition for the delay must be met for the minimum rise time:

In this mode the fractional threshold VT /V0 varies with rise time.

For all amplitudes and rise times within the compensation range the
comparator fires at the time
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Another View of Constant Fraction Discriminators

The constant fraction discriminator can be analyzed as a pulse
shaper, comprising the

• delay
• attenuator
• subtraction

driving a trigger that responds to the zero crossing.

The timing jitter depends on

• the slope at the zero-crossing
(depends on choice of f and td )

• the noise at the output of the shaper
(this circuit increases the noise bandwidth)
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Examples

1. γ -γ coincidence (as used in positron emission tomography)

Positron annihilation emits two collinear 511 keV photons.

Each detector alone will register substantial background.

Non-coincident background can be suppressed by requiring
simultaneous signals from both detectors.

• Each detector feeds a fast timing channel.

• The timing pulses are combined in an AND gate (coincidence
unit). The AND gate only provides an output if the two timing
pulses overlap.

• The coincidence output is used to open a linear gate, that allows
the energy signal to pass to the ADC.
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This arrangement accommodates the contradictory requirements of
timing and energy measurements. The timing channels can be fast,
whereas the energy channel can use slow shaping to optimize energy
resolution (“fast-slow coincidence”).

Chance coincidence rate

Two random pulse sequences have some probability of
coincident events.

If the event rates in the two channels are n1 and n2, and the
timing pulse widths are ∆t1 and ∆t2, the probabality of a pulse
from the first source occuring in the total coincidence window is

The coincidence is “sampled” at a rate n2 , so the chance
coincidence rate is

i.e. in the arrangement shown above, the chance coincidence
rate increases with the square of the source strength.

Example: n1 = n2 = 106 s-1

∆t1 =  ∆t1 = 5 ns

⇒     nc= 104 s-1
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2. Nuclear Mass Spectroscopy by Time-of-Flight

Two silicon detectors

First detector thin, so that particle passes through it
(transmission detector)

⇒ differential energy loss ∆E

Second detector thick enough to stop particle

⇒ Residual energy E

Measure time-of-flight ∆t between the two detectors
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“Typical” Results

Example 1 

Flight path 20 cm, ∆t ≈ 50 ps FWHM

σ t = 21 ps

(H. Spieler et al., Z. Phys. A278 (1976) 241)
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Example 2

1. ∆E-detector: 27 µm thick, A= 100 mm2, <E>=1.1.104 V/cm

2. E-detector: 142 µm thick, A= 100 mm2, <E>=2.104 V/cm

For 230 MeV 28Si: ∆E =  50 MeV ⇒ Vs=  5.6 mV

E   = 180 MeV ⇒ Vs= 106 mV

⇒ ∆t = 32 ps FWHM

σ t = 14 ps

Example 3

Two transmission detectors,

each 160 µm thick, A= 320 mm2

For 650 MeV/u 20Ne: ∆E =  4.6 MeV ⇒ Vs= 800 µV

⇒ ∆t = 180 ps FWHM

σ t =   77 ps

For 250 MeV/u 20Ne: ∆E =  6.9 MeV ⇒ Vs= 1.2 mV

⇒ ∆t = 120 ps FWHM

σ t =   52 ps
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Fast Timing:  Comparison between theory and experiment

At S/N<100 the measured curve lies above the calculation because
the timing discriminator limited the rise time.
At high S/N the residual jitter of the time digitizer limits the resolution.

For more details on fast timing with semiconductor detectors,
see H. Spieler, IEEE Trans. Nucl. Sci. NS-29/3 (1982) 1142.
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Timing with Photomultiplier Tubes

1. Scintillator

Assume a scintillator with a single decay constant τ , which coupled
to a photomultiplier tube yields a total number of photoelectrons N.

The probability of the emission of a single photoelectron in the time
interval t, t+dt is

The mean emission rate is

The probability that the nth photon is emitted in the time interval
t, t+dt is

where f(t) is the average or expected number of photons emitted up
to the time t. (R.F. Post and L.I. Schiff, Phys. Rev. 80 (1950) 1113)

For the simple exponential decay shown above
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Time distributions for triggering on the 1st, 2nd, 3rd and 4th

photoelectron

The time resolution is best for n = 1, which at small times yields an
exponential timing distribution with the time constant

(F. Lynch, IEEE Trans. Nucl. Sci., NS-13/3 (1966) 140)
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2. The Photomultiplier

Photoelectrons emitted from the photocathode are subject to time
variations in reaching the anode.

For a typical fast 2” PMT (Philips XP2020) the transit time from the
photocathode to the anode is about 30 ns at 2000V.

The intrinsic rise time is 1.6 ns, due to broadening of the initial
electron packet in the course of the multiplication process.

The transit time varies by 0.25 ns between the center of the
photocathode and a radius of 18 mm.

For two tubes operating in coincidence at a signal level of 1500
photoelectrons, a time resolution of 230 ps is possible.

Special dynode structures are used to reduce transit time spread.

Example: time compensating structure

(from Burle Photomultiplier Handbook)
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Even for photons impinging on a given position, the transit time
through a photomultiplier varies from photon to photon, since
photoelectrons are emitted from the photocathode with varying
velocities and directions.

(from Photomultiplier Tubes, Philips Photonics)

The transit time “jitter” distribution is often gaussian, yielding an
instantaneous anode current

Then the response to the scintillator becomes the convolution of the
exponential decay function with the Gaussian transit time spread
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The transit time spread imparts a finite rise time to the output pulse,
due to the smearing of the arrival times of electrons at the anode.

PMT output pulses for various values of scintillator decay time τfl and
transit time jitter tp.

(from Kowalski, Nuclear Electronics)
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If the decay time of the scintillator is short with respect to the transit
time spread, signals from successive photoelectrons will be
comingled and the signal from the first photon can no longer be
distinguished from the response to successive photons.

Now it may become advantageous to trigger after some integration
time. As a consequence, fast scintillators often provide the best
timing at a fixed fraction of their peak output signal, typically 0.1 to
0.3. Only for relative slow scintillators, NaI(Tl) with a decay time of
250 ns for example, is the fraction very small, of order 1%.

Many scintillators exhibit an inherent rise time

Here, τ1 represents the non-radiative transitions that feed the

optically active states, which emit photons with the time constant τ2.

This expression is accurate for binary solution scintillators and is a
good approximation for ternary solution scintillators. Here triggering at
10 to 30% of the peak pulse height is nearly always advantageous,
since the rise time of the scintillator masks the transit time spread of
the photomultiplier.
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